a2 United States Patent
Kothe et al.

US009264326B2

US 9,264,326 B2
*Feb. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54) ABSTRACT REPRESENTATION AND
PROVISIONING OF NETWORK SERVICES

(71) Applicant: Cisco Technology, Inc., San Jose, CA
(US)

(72) Inventors: Sridhararao V. Kothe, Bangalore (IN);
Sreenivas Devalla, Union City, CA
(US); Satyanarayana DV Raju, San
Ramon, CA (US); Nakka Siva Kishore
Kumar, Milpitas, CA (US)

73) Assignee: Cisco Technology, Inc., San Jose, CA
g AL
us)
*) Notice: Subject to any disclaimer, the term of this
] Yy
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 14/553,035

(22) Filed: Now. 25, 2014
(65) Prior Publication Data
US 2015/0081900 A1 Mar. 19, 2015

Related U.S. Application Data

(63) Continuation of application No. 13/334,268, filed on
Dec. 22, 2011, now Pat. No. 8,943,184.

(60) Provisional application No. 61/429,148, filed on Jan.
2, 2011, provisional application No. 61/429,147, filed
on Jan. 2, 2011, provisional application No.
61/429,139, filed on Jan. 2, 2011.

(51) Int.CL
GOGF 15/173 (2006.01)
HO4L 12/26 (2006.01)
HO4L 12/24 (2006.01)

(52) US.CL
CPC HO4L 43/08 (2013.01); HO4L 41/022
(2013.01); HO4L 41/0226 (2013.01); HO4L
41/0266 (2013.01); HO4L 43/04 (2013.01);
HO4L 43/045 (2013.01); HO4L 43/062
(2013.01); HO4L 43/065 (2013.01)
(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,293,063 Bl 112007 Sobel
7,533,144 B2 5/2009 Kassab
7,620,724 B2 112009 Weisman et al.
7,739,341 Bl 6/2010 Sobel
7,810,041 B2 10/2010 Rao etal.
7,823,069 Bl 10/2010 Tanner et al.

2006/0031404 Al
2006/0184661 Al
2011/0179478 Al*

2/2006 Kassab
8/2006 Weisman et al.
72011 FLick .oovovoeioiiiieeceeienn 726/9

* cited by examiner

Primary Examiner — Brian P Whipple

(74) Attorney, Agent, or Firm — Edell, Shapiro & Finnan,
LLC

(57) ABSTRACT

A network management device connects to a device on the
network, receives a trigger for an operation command, sup-
plies to the device a command line interface command for the
operation command, wherein a randomly generated string is
included at the end of the command line interface command.
The network management device receives the output of the
operation command from the device, detects the end of the
operation command output and parses the output using an
XML-based parser. XML based configuration files are used
for configuration of different network devices. XML based
report files are used to generate different network reports.

20 Claims, 10 Drawing Sheets

900

RECEIVE A TRIGGER TO EXECUTE AN OPERATION J
COMMAND ON A NETWORK DEVICE

910

[CONNECT 70 THE NETWORK DEVICE}—/

920

SUPPLY COMMAND LINE INTERFACE COMMAND HAVING A | /

RANDOMLY GENERATED STRING AT THE END OF THE COMMAND

930

fRECE\VE QUTPUT OF THE OPERATION COMMAND FROM THE DEVICE|~/’

“

DETECT END OF THE OPERATION COMMAND QUTPUT|
BASED ON THE RANDOMLY GENERATED STRING

850
)

PARSE THE OPERATION COMMAND OUTPUT GENERATED| .~/
BY THE DEVICE USING AN XML BASED PARSER

U.S. Patent Feb. 16, 2016 Sheet 1 of 10 US 9,264,326 B2

i
=
1 |/ / 160
—=|
D e

U.S. Patent Feb. 16, 2016 Sheet 2 of 10 US 9,264,326 B2
206
260
|
/20 ~ (OPTIONAL
TRIGGER USERINTERFACE| | MANAGEMENT
DETECTION FOR INPUT DEVICE
MODULE
240 20
SHOW |\ CONFIGURATIONS [
COMMANDS | |~ COMMANDS PROCESSOR
MODULE | 939 MODULE
REPORT | 47 NETWORK
GENERATION| | (OPTIONA INTERFACE
USER INTERFACE UNIT
MODULE
") | FORDISPLAYING -
VEMORY 250 | REPORTS
200
205

TELNET OR SSH OR OTHER
NETWORK CONNECTION

NETWORK NETWORK NETWORK
DEVICE DEVICE | e e | DEVICE
1 2 N
[))
210(1) 210(2) 210N)

U.S. Patent Feb. 16, 2016 Sheet 3 of 10 US 9,264,326 B2

TRIGGERTO jOO

INVOKE AN
OPERATION
COMMAND

NETWORK
MANAGEMENT
DEVICE

30
{ CONNECT TO THE DEVICE

320
/ 350 | (" DEVICE ACCEPTS CONNECTION

PARSE CLIoUTRPUT | 3% NETWORK

ONTLTVE UNIGUE.|L_SEND CLI COMMAND + UNIQUE STRING DEVICE
STRING IS DETECTED

1 SEND CLI OUTPUT + UNIQUE STRING
L340

XML BASED PARSER

TO PARSE THE QUTPUT
\-360

\200 szm

FIG.3

U.S. Patent Feb. 16, 2016 Sheet 4 of 10 US 9,264,326 B2

400
K_L'\

Input Command : show cdp neighbors<CR><unique string>

Output ;

3500-1 #show cdp neighbors

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, | - IGMP, r - Repeater, P - Phone

Device D LocalIntrfce Holdtime ~ Capability ~ Platorm Port ID
switch-3500-1.laop

Gig 0/1 171 T3S WS-C3508G-Gig 0/8
PAriLocalRouter.pari-net-com
Fas 0/1 160 RSI WS-C3750G-Gig 1/0/19
3500-1#<unique string>
400

FIG4

U.S. Patent Feb. 16, 2016 Sheet 5 of 10 US 9,264,326 B2

RECEIVE CLI OUTPUT FROM A NETWORK DEVICE /

BASED ON THE PARTICULAR NETWORK DEVICE FROM WHICH THE /
QUTPUT IS RECEIVED, SELECT A STORED XML FILE FOR THE OUTPUT

520
SUPPLY OUTPUT AND XMLFILETOXML |)
QUTPUT PARSER TO PARSE THE QUTPUT

530
XML OUTPUT PARSER GENERATESAREPORT |)

FROM PARSED QUTPUT AND XML REPORT FILE

FIG.5

U.S. Patent Feb. 16, 2016 Sheet 6 of 10 US 9,264,326 B2

Cisco#show inventory

NAME: "Switch System", DESCR: "Cisco Systems, Inc. WS-C4506 6 slot switch "

ID: WS-C4506 , VID: V06, SN; FOX10450V54

NAME: “Linecard(slot 1)", DESCR: "Supervisor V-10GE with 2 10GE X2 ports, and 4 1000BaseX SFP ports"
ID: WS-X4516-10GE , VID: V05, SN: JAE102347T0

Name: "Linecard(slot 2)", DESCR: "10/100/1000BaseT (RJ45) with 48 10/100/1000 baseT ports"
ID; WS-X4548-GB-RJ45 , VID: V04, SN: JAE10296RDZ

NAME: "Fan", DESCR: "FanTray"

ID: WS-X4596 , VID: V03, SN: NWG10430A5X

NAME: "Power Supply 1", DESCR: "Power Supply (AC 4200w)"

ID: PWR-C45-4200ACV , VID: V02, SN: SNI1038C13W

NAME: "Power Supply 2", DESCR: "Power Supply (AC 4200w)"

ID: PWR-C45-4200ACV , VID: V02, SN: SNI1046C138

Cisco#<UniqueString>

FIG.6A

US 9,264,326 B2

Sheet 7 of 10

Feb. 16, 2016

U.S. Patent

RSO R I

OEIAT

i3 i
L2l

SRR i 3 s g : RO

gedsasctol

U.S. Patent Feb. 16, 2016 Sheet 8 of 10 US 9,264,326 B2

760

770

PROVISION
SERVICE
DEFINITIONS

SERVICE
D RUNTIME
DATA

USER
INTERFACE
740
NORMALIZED CONFIGURATION VIEW B
730
DEVICE CONFIGURATION ABSTRACTION LAYER f~—
700 710
ANOTHER
0§ VENDOR
J& OROS
VERSION

FIG.7

US 9,264,326 B2

Sheet 9 of 10

Feb. 16, 2016

U.S. Patent

89l

251ey parmbag
EIUMEIISL0)
Tatas Borahs
ST UaET 0] 280 S017) 2RI T
J0 S531pIER T S EaUppe] 2UIES A1) U0
a1 safessar Bopsds 2y e ns oxEm
0} SN[EA ST 9% I9IN0J 91} 9483] U sast
T ATELEIUL 317 1O S50.0008 J1 21 SUTRIIng
AULBOEAS B NEIAN A Sa8essan

107 ssaappe 0 soming Sy

uonpdisagg

& -
SUTaT Swadn

Z] ,,

sige

» ey B

o Pl
2

U.S. Patent Feb. 16, 2016 Sheet 10 of 10

COMMAND ON A NETWORK DEVICE

CONNECT 70 THE NETWORK DEVICE

US 9,264,326 B2

RECEIVE A TRIGGER TO EXECUTE AN OPERATION J

920

SUPPLY COMMAND LINE INTERFACE COMMAND HAVING A
RANDOMLY GENERATED STRING AT THE END OF THE COMMAND

|

930

RECEIVE OUTPUT OF THE OPERATION COMMAND FROM THE DEVICE}——"

BASED ON THE RANDOMLY GENERATED STRING

BY THE DEVICE USING AN XML BASED PARSER

FIG.9

940

DETECT END OF THE OPERATION COMMAND OUTPUT J

950

PARSE THE OPERATION COMMAND OUTPUT GENERATED J

US 9,264,326 B2

1
ABSTRACT REPRESENTATION AND
PROVISIONING OF NETWORK SERVICES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. Non-Provisional
Application No. 13/334,268, filed Dec. 22, 2011, which
claims priority to U.S. Provisional Application Nos. 61/429,
139, 61/429,147 and 61/429,148 each filed on Jan. 2, 2011,
the entirety of each of which is incorporated herein by refer-
ence.

TECHNICAL FIELD

The present disclosure relates monitoring network services
on network devices in a network management system.

BACKGROUND

In a network, there are many different kinds of network
devices, each performing different types of functions. For
example, a router routes/forwards packets from an external
network to an internal network, and vice versa. A switch
connects different types of networked devices like printers,
different types of servers and computers in a network. A
network device may support a feature like network address
translation, firewall or domain name services, etc.

Different types of network management system software
are employed to configure and monitor different network
management systems. Network management software is
typically tied to the devices with which the software can
operate. When the network device software version or the
vendor of a network device changes, the network manage-
ment software typically cannot incorporate those changes.
For example, if a customer is using network devices manu-
factured by Company A and then decides to buy and deploy
network devices from Company B, a single network manage-
ment software product will not work with network devices of
both Company A and Company B.

Additionally, network management is usually performed
from a central location with a collection of modules running
at different network nodes assisting a central management
node. A client software instance needs to be installed on the
network devices for them to be able to talk to the management
device. Customers typically do not want to install monitoring
or configuring software on their network devices because
these modules can slow the normal operations of the network
devices.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a diagram depicting an example of a network with
different types of network devices.

FIG. 2 is a block diagram showing an example of a man-
agement device communicating with different network
devices.

FIG. 3 is a diagram generally depicting a flow to detect an
end of command for an operation command output.

FIG. 4 shows an example of a show command with end of
command detection.

FIG. 5 is a flow chart showing report generation and use of
Extensible Markup Language (XML) files for parsing the
output and report generation.

FIG. 6A is a diagram providing a listing of output of an
example operation command.

15

20

25

30

40

45

50

55

60

65

2

FIG. 6B is a graphical user interface display screen-shot
showing an example of a generated report using an XML
report generation parser.

FIG. 7 is a diagram showing configuration of services
according to techniques described herein.

FIG. 8 is a graphical user interface screen-shot showing an
example of an input Hypertext Markup Language (HTML)
page generated using an XML file to obtain user input.

FIG. 9 is a flow chart showing operations involved in
network management and/or configuration of one or more
network devices using a flexible XML based parser.

DESCRIPTION OF EXAMPLE EMBODIMENTS

Overview

Ina network management and configuration system, one or
more network devices can be monitored or configured using
different operation commands. An input from the user or
automatic scheduling can trigger the network management
device to invoke execution of an operation command. The
network management device connects to one or more net-
work devices. After establishing a connection, the network
management device supplies the operation command with a
randomly generated string at the end of the command. The
network device executes the command and sends the
response back to the network management device with the
randomly generated string at the end of the output. The net-
work management device detects the end of the command
output based on the randomly generated string. The network
management device then proceeds to parse the command
output using an XML based parser.
Example Embodiments

Referring first to FIG. 1, a network is shown generally at
reference numeral 10. The network 10 can incorporate the
network management techniques disclosed herein. The dif-
ferent devices in the network 10 are logically connected to all
the other devices in the same network. The arrows shown in
the FIG. 1 are for example only and do not depict all the
possible connections and interconnections between devices.
For example router 100 is shown to be connected to a wireless
router or switch 110. A server 120 is connected to the router
100. For example, the server 120 can be a database server,
webserver or email server, etc. FIG. 1 shows one server 120
by way of example only. A typical network may have numer-
ous servers. Similarly, network client devices in the network
10 may include smart phone 130 and computer 135. A net-
work printer 140 and network fax 160 are also connected to
the router 100. The network management software described
herein can be executed on any device on the network 10. For
example, the network management software can run on a
network device, network server or network client.

Reference is now made to FIG. 2 for a description of a
block diagram showing different modules within a network
management device and its communication with different
network devices. The network management device 200 is
connected to one or more network devices 210(1), 210(2), . .
. 210(N). The network management device 200 can connect
to any of the network devices using any widely used and
available network application programming interface over
network 205. For example, the network management device
200 can connect using telnet for an unsecure connection and
Secure Shell (ssh) for a secure connection. The network man-
agement device 200 does not have any special client code
executing on any of the network devices. The network devices
210(1),210(2), . . ., 210(N), treat a connect request from the
network management device 200 with the same response as it
would treat a user triggered connect request. The network

US 9,264,326 B2

3

devices 210(1), 210(2), . . ., 210(N) do not have the intelli-
gence to determine whether the connect request is coming
from a user or automated programmatically through a net-
work management device. The intelligence for performing
the techniques described herein resides within the network
management device 200.

To this end, the network management device 200 com-
prises a processor 202, a network interface unit 204, and
memory 206. The processor 202 may be a microprocessor,
microcontroller or a collection or microprocessors or micro-
controllers. The processor 202 executes software, i.e., com-
puter executable instructions, stored in memory 206, to per-
form various operations including those of the modules
shown and described herein. The network interface unit 204 is
a device that enables communications over network 205. For
example, the network interface unit 204 is an Ethernet card.

Memory 206 may comprise read only memory (ROM),
random access memory (RAM), magnetic disk storage media
devices, optical storage media devices, flash memory devices,
electrical, optical, or other physical/tangible (non-transitory)
memory storage devices. Thus, in general, the memory 206
may comprise one or more tangible computer readable stor-
age media (e.g., a memory device) encoded with software
comprising computer executable instructions and when the
software is executed (by the processor 202) it is operable to
perform the operations described herein.

Specifically, the memory 206 stores executable instruc-
tions for a trigger detection module 220, a show commands
module 230, a configuration commands module 240, a report
generation module 250, an optional user interface for input
module 260, and an optional user interface for display module
270. These modules are described hereinafter.

Once a connection is established with a network device, the
network management 200 device uses one or more of the
software modules 220-270 shown in FIG. 2 to perform dif-
ferent functionality and features. The network management
device 200 responds to a trigger that is based on an automatic
scheduler or based on user input. The trigger defines the
current task to be carried out by the network management
device 200. The network management device 200 selects an
operation command based on the trigger request. The proces-
sor 202 executes instructions of the trigger detection module
220 to detect to different triggers and select the operation
command to be executed.

One type of network command is a status or “show” com-
mand and another type of network command is a configura-
tion command. The network management device 200
executes the show commands module 230 to handle operation
of show commands and executes the configuration com-
mands module 240 to handle operation of the configuration
commands. The network management device 200 supplies
the operation command with a randomly generated string and
sends it to a network device after establishing a connection
with the network device. The response from the network
device is then handled by the show commands module 230 or
the configuration commands module 240.

The parsed output from the show commands module 230 or
configuration commands module 240 is then given to a report
generation module 250. The report generation module 250
generates reports based on an XML defined report format.
The report may be of a simple format, and indicates whether
the configuration was successful or whether the configuration
failed. There may be different types of reports based on the
user request.

The user interface for input module 260 is an optional
module. The network management device 200 can be config-
ured automatically by a task scheduler and configuration files

5

10

20

25

30

35

40

45

55

60

65

4

that are used to configure the network management device
200 or through a user interface. For example, a user may
schedule network management operations to be performed on
one or more network devices once a day, weekly or monthly.
In addition, the network management device 200 may be
configured to generate an end of life cycle report for all the
devices on the network. Once the user schedules such a task,
the network management device 200 does not require any
further user interface/inputs to trigger an event. Another sce-
nario is when a user using an HTML-based interface or a
graphical user interface, invokes certain operation com-
mands. These user interface commands define the operation
command and request the network management device 200 to
invoke them on the selected network devices. The user inter-
face for input module 260 may be implemented in any pro-
gramming language, including and not limited to, object ori-
ented programming languages like Java and C++.

The user interface for displaying reports module 270 is
another optional module. Once a report is generated, the
network management device 200 is capable of sending the
report by email, fax or text messaging using any now known
or hereinafter developed notifications techniques in the field.
The user may also choose to have a user interface displaying
the reports. This user interface could be driven by HTML
pages on a web server or through a software graphical user
interface using a Java application programming interface or
any other graphical user interface software.

The modules shown in FIG. 2 may reside on the manage-
ment device. However, it is not necessary or essential for all
the modules to reside on a single device. The functionality of
the network management device 200 may be divided into or
distributed across two or more devices, where the devices can
communicate with each other any heretofore known or here-
inafter developed communication techniques.

Reference is now made to FIG. 3 for a description of a flow
to detect end of the command output. These operations may
be part of the functions of the trigger detection module 220,
for example. At 300, a trigger to invoke an operation com-
mand occurs. The management device 200 then begins the
exchange of messages with a network device, e.g., the net-
work device 210(1). First, at 310, the network management
device 200 makes a request to connect to the network device
210(1). The network device 210(1) can accept the connection
orreject it. Ifthe network device 210(1) rejects the connection
then the network management device returns an error or
optionally generates an error report for that network device. If
the network device 210(1) accepts the connection as shown at
320, the network management device 20 then sends the opera-
tion command, e.g., in the form of a Command Line Interface
(CLI) command, followed by a carriage return <CR>, fol-
lowed by a randomly generated unique character string at the
end of the operation command, at 330. The network device
210(1), at 340, then generates the output of the operation
command that it executed and sends the output of the opera-
tion command back together with the same randomly gener-
ated unique string at the end of the output of the operation
command. The network management device 20 can deter-
mine that the output is finished or complete by detecting the
randomly generated unique string that it sent with the opera-
tion command. There is no special software stored on the
network device 210(1) to send back the output with the
unique string appended at the end of the output; it is auto-
matically added to the output because of the way it was
included with the command sent by the network management
device 200. At 350, the network management device 200 then
parses the output of the operation command in order to detect
the randomly generated unique string. At 360, the network

US 9,264,326 B2

5

management device 200 then supplies only the operation
command output to an XML based parser to parse the output
for analysis, etc. The XML based parser may be configured to
parse different operation command outputs with XML files
using anchors and regular expressions irrespective of whether
the output is free style or in tabular form.

FIG. 4 shows an example of an input operation command
with a unique string 400 at the end. The unique string is shown
at 400 at the end of the output received from the network
device after the “#” symbol. Thus, all of the content prior to
the unique string can be parsed as the actual output generated
by the network device in response to the operation command
sent by the network management device 200.

Currently, there is no easy way to detect end of command
output when executing commands programmatically on net-
work devices. For example, network devices manufactured
and sold by Cisco Systems, Inc., have different operating
systems, namely, IOS/IOSXR/CatOS/NXOS. The network
management applications need to learn about the different
submodes and command prompts before attempting to
execute the CLIs on the device. The learned command
prompts are used to identify the end of the command output.
In some cases, the same command can be executed in differ-
ent submodes. A developer also needs to identify the submode
of a CLI session before attempting to read the command
output and identify the end of command output.

Appending a Carriage Return <CR> and a “unique string”
to the end of the command is used to detect the end of
command output generated and returned by the network
device to the network management device. A CLI session
allows a single command at a time from a single CLI session.
Even if multiple commands are sent simultaneously to the
network device, the network device will execute the com-
mands in serial. If a command is sent to the device along with
a <CR> and a unique string, the device executes the com-
mand, dumps the output and echoes the unique string at the
end of the command output. When reading the command
output, the software application that parses the output looks
for and detects this “unique string™ to reliably identify the end
of'the command output. There are numerous techniques avail-
able in the art to generate various unique character strings for
use in connection with these techniques.

By using the technique described above in connection with
FIGS. 3 and 4, the process of detecting the end of the output
becomes very simple and with very little effort from a soft-
ware programmer. There is no need to learn about different
submodes, different command prompts or keeping track of
the submode of a CLI session. The developer merely appends
<CR> and a unique string to the command before sending to
the device. The network device dumps the command output
and echoes the unique string on a new line at the end of the
command output. The parsing software detects the unique
string to identify the end of the output.

Reference is now made to FI1G. 5 that shows a flow chart for
use of XML files to parse network device output and generate
reports. These operations are performed when the instruc-
tions for the report generation module 250 are executed on the
network management device 200. At 500, the management
device parses the CLI output received from a network device.
In so doing, the management device may detect and remove
the unique string at the end of the output. Based on the CLI
output and the particular network device from which the
output is received, at 510, the management device selects a
stored XML definitional file for that particular network
device and command performed by that particular network
device. At 520, the management device 200 supplies the
combination of the CLI output and the XML definitional file

20

25

30

35

40

45

6

to the output parser to parse the output. At 530, the XML
based parser generates a report based on a selected XML
report file and creates a run-time version of the XML report.

For example, on the management device, the module pars-
ing the output received from a network device runs on a server
engine. The server engine parses the text file (i.e., XML file),
and obtains the data in the output received from the network
device. There is no need to write a parser for all the numerous
different operation commands, which can change or be dif-
ferent across network devices and different software versions
on network devices. Since the parsing of the output from the
network device is performed using XML text files with a
predefined grammar, adding new files (in the event a new
show command is defined) is rather simple, and does not
require any additional work, other than placing the XML file
for that network device in a location accessible for selection.

The technique depicted by FIG. 5 can be used to generate
different reports. Examples of these reports include network
device reports, service reports, compliance and audit reports,
lifecycle management reports, and traffic flow reports. When
the operation commands are status or show commands, the
output generated by the network device for the command
provides a wealth of information and that information is
processed by the management device to check the network
device health and the overall health of the network.

Currently there is no easy way to parse the “show <com-
mand>" outputs to gather the required information from a
network device, such as the show commands that may be
generated by the show commands module 230 shown in FIG.
2. Each “show command” has a different format and a differ-
ent parser needs to be written to parse the output from difter-
ent network devices. Supporting a new “show command”
requires considerable amount of work and code change. The
techniques described in connection with FIG. 5 simplify the
process of parsing status command outputs and also adding
support for new commands.

An XML-Schema is defined that can show the command
output in an XML format. The XML based parser takes the
XML file and the output of the command and fetches the
information as defined by the XML file. The XML Schema
file defines different attributes in a command output. This
technique allows for parsing of show command output in an
extendible way, and consequently provides an application
with a wealth of knowledge that is otherwise buried in com-
mand output received from a network device, without a user
having to parse the CLI output. Different standards bodies
define different types of reports, and the techniques described
herein allow for generating these reports in a flexible manner.
For example, reports for PSIRT, HIPAA, PCI and Field
Notices, can be readily generated using these techniques.

Network devices provide various services (also called fea-
tures) to be configured on them in order to make use of these
features in establishing and maintaining networks. These fea-
tures could be simple features or more advanced features.
Some examples of the features available on network devices
are, “SNMP Agent”, “BGP Routing”, “Network Address
Translation (NAT).”

Even though several parameters of these network services
are independent of the vendor manufacturing these devices,
operating system and firmware executed on the device, each
of the services has a different manner of configuration. For
example, configuring a BGP Routing feature on a network
device manufactured by Vendor A is different from network
devices manufactured by Vendor B even though the general
concepts of how BGP works are the same across all vendors.
There is no easy way for users to be able to view the current
configurations or to provision these features across devices of

US 9,264,326 B2

7

multiple vendors and multiple releases of operating systems
without knowing the intricate details of the user interfaces for
those devices.

FIG. 6A illustrates output of a show inventory command
supplied to a switch device and its associated connected
devices. Set forth blow is the XML parser code to parse that
output.

<?xml version="1.0" encoding="UTF-8"?>
<Command xmlns:xsi=“http://www.w3.0rg/2001/XMLSchema-instance’
xsi:noNamespaceSchemalocation="showCommands.xsd”>
<VersionSelectorRefs>
<VersionSelectorRef>c2600ios</VersionSelectorRef>
<VersionSelectorRef>c2600i0s12_3</VersionSelectorRef>
</VersionSelectorRefs>
<Cli>show interface</Cli>
<ParserFileName>showPixInterfaces </ParserFileName>
<AttributeList context="InterfaceName>

10

15

8

-continued

<Rule operator="“NextTo”>
<Anchor>
<String>BW</String>
</Anchor>
</Rule>
</Grammer>
</Attribute>
<Attribute>
<AttributeName>MacAddress</AttributeName>
<AttributeType>STRING</Attribute Type>
<AttributeWordCount>1</AttributeWordCount>
<StripChars>,</StripChars>
<Grammer>
<Rule operator="“NextTo”>
<Anchor>
<String>MAC address</String>
</Anchor>
</Rule>
</Grammer>

<Cordinality>REPEAT</Cordinality>
<Attribute>
<AttributeName>InterfaceName</AttributeName>
<AttributeType>STRING</Attribute Type>
<AttributeWordCount>1</AttributeWordCount>
<Grammer>
<Rule operator="NextTo”>
<Anchor>
<String>Interface</String>
</Anchor>
</Rule>
</Grammer>
</Attribute>
<Attribute>
<AttributeName>Interface Type</AttributeName>
<AttributeType>STRING</Attribute Type>
<AttributeWordCount>1</AttributeWordCount>
<StripChars>*“</StripChars>
<Grammer>
<Rule operator="NextTo”>
<Anchor>
<String>$InterfaceName</String>
</Anchor>
</Rule>
</Grammer>
</Attribute>
<Attribute>
<AttributeName>AdminStatus</AttributeName>
<AttributeType>STRING</Attribute Type>
<AttributeWordCount>1</AttributeWordCount>
<StripChars>,</StripChars>
<Grammer>
<Rule operator="NextTo”>
<Anchor>
<String>is</String>
</Anchor>
</Rule>
<Rule operator="Until”>
<Anchor>
<String>line </String>
</Anchor>
</Rule>
</Grammer>
</Attribute>
<Attribute>
<AttributeName>OperStatus</AttributeName>
<AttributeType>STRING</Attribute Type>
<AttributeWordCount>1</AttributeWordCount>
<Grammer>
<Rule operator="NextTo”>
<Anchor>
<String>protocol is</String>
</Anchor>
</Rule>
</Grammer>
</Attribute>
<Attribute>
<AttributeName>Speed</AttributeName>
<AttributeType>INTEGER </Attribute Type>
<AttributeWordCount>1</AttributeWordCount>
<Grammer>

20

25

30

35

45

50

55

60

65

</Attribute>
<Attribute>
<AttributeName>InternetAddress</AttributeName>
<AttributeType>STRING</Attribute Type>
<AttributeWordCount>1</AttributeWordCount>
<StripChars>,</StripChars>
<Grammer>
<Rule operator="“NextTo”>
<Anchor>
<Starts With>IP</StartsWith>
<Ends With>address</EndsWith>
</Anchor>
</Rule>
</Grammer>
</Attribute>
<Attribute>
<AttributeName>NetMask</AttributeName>
<AttributeType>STRING</Attribute Type>
<AttributeWordCount>1</AttributeWordCount>
<Grammer>
<Rule operator="“NextTo”>
<Anchor>
<String>subnet mask</String>
</Anchor>
</Rule>
</Grammer>
</Attribute>
</AttributeList>
</Command>

FIG. 6B is a graphical user interface screen-shot that illus-
trates an example of a report generated using the XML parser
code set forth above, that generates a presentation of the
output in a more user friendly graphical user interface format.

Reference is now made to FIG. 7 that shows a diagram
depicting techniques for configuration of services on a net-
work device. The data structures and operations depicted by
FIG. 7 may be defined and performed by the configurations
command module 240 shown in FIG. 2. FIG. 7 shows two
different underlying networks 700 and 710 by way of
example. There may be more than two networks with varied
configurations. Network 700 includes network devices that
operate according to a first version of an operating system
(0S), e.g., “OS v1” and network 710 includes network
devices that operate according to another vendor OS or a
different version of the same OS used by network devices in
network 700. The overlaying architecture remains consistent
across different networks.

A device configuration abstraction layer 730 is provided
that defines different network devices and the configuration
commands a network device can accept for a given network.
These network devices are defined as text files in XML format
using a pre-defined XML Schema. A normalized configura-
tion view 740 represents existing device configuration in
XML format that can then be presented to a user using a

US 9,264,326 B2

9

graphical user interface, e.g., user interface 750 (display/
monitor of a network management device, in one example).
The user interface 750 receives the current configuration,
which is designated as service runtime data of an existing
network. The current configuration is divided into different
feature sets called “services.” Provision service definitions
770 are used to generate the normalized configuration view
740 from the service runtime data 760.

The techniques to define various network device features
can be represented in an abstract XML format that is inde-
pendent of the command syntaxes and semantics of how these
features are actually configured on the network devices.
According to these techniques, there are three types of XML
files. The first type is Definition XML files which define the
meta or static information of each service. i.e., the definition
of'aservice and its attributes. For example, BGP Routing has
attributes of BGP Process identifier (ID), neighbor ID, BGP
global attributes, etc. The second type is a Runtime XML file
that contains the actual values of attributes configured or to be
configured on the network device for a given service. The
third type is a Decorator XML file that contains information
about how a user interface should render these attributes, how
to group the attributes, hints on laying out these attributes etc.
The Service Definition XML also defines the relationships
between various attributes within a service or across different
services. These relationships may help validate the values in
a Runtime XML to ensure that the runtime values are accu-
rate. The Service Definition XML also defines the constraints
of a given attribute. For example, minimum and maximum
values allowed for that attribute. Thus, the network manage-
ment device stores in its memory 206 (FIG. 2), definition
XML files, runtime XML files and decorator XML files.

A graphical user interface (GUI) can be automatically cre-
ated from the Service Definition XML files. The GUI engine
parses the Service Definition XML files and lays out the GUI
attributes for presentation to a user. Using the three different
XMLs, a GUI is automatically presented to the user without
having to write customized user interface software for each of
these services separately.

A partial listing of the Definition XML file for a “logging”
service is as follows:

<?xml version="1.0" encoding="“UTF-8” 7>
- <Service xmlns="“http://www.parinetworks.com/schemas/1.0”
xmlns:pariver="“http://www.parinetworks.com/versiontypes/1.0”
identifier="Logging”>
- <PlatformDefinitions>
— <pariver:OS identifier="0s.cisco.i0s.12.2(8).later”>
<pariver:Description>Cisco IOS Version 12.2(8)
releases</pariver:Description™>
<pariver:Extends>os.cisco.ios</pariver:Extends>
<pariver:Level >12</pariver:Level >
- <pariver:IOSVersionInfo>
- <pariver:Version >
— <pariver:Name>
<pariver:Major>12</pariver:-Major>
<pariver:Minor>2</pariver:Minor>
<pariver:Releaseldentifier>8</pariver:Releaseldentifier>
</pariver:Name>
<pariver:Operator>Greater ThanEquals</pariver:Operator>
</pariver:Version >
</pariver:I0SVersionInfo>
</pariver:0S >
— <pariver:OS identifier="0s.cisco.i0s.12.2(15)T.later”>
<pariver:Description >Cisco IOS Version 12.2(15)T and later
releases</pariver:Description™>
<pariver:Extends>os.cisco.ios</pariver:Extends>
<pariver:Level >12</pariver:Level >
- <pariver:IOSVersionInfo>
- <pariver:Version >

10

-continued

— <pariver:Name>
<pariver:Major>12</pariver:-Major>
<pariver:Minor>2</pariver:Minor>
<pariver:Releaseldentifier>15 </pariver:Releaseldentifier>
</pariver:Name>
<pariver:Operator>Greater ThanEquals</pariver:Operator>
</pariver:Version >
</pariver:I0SVersionInfo>
</pariver:0OS >
10 - <pariver:Platform identifier="ios_logging count”>
<pariver:Description >Any Cisco device with IOS Version
12.2.x</pariver:Description >
<pariver:OSReference>os.cisco.ios.12.2(8).later</pariver:OSReferen
ce>
</pariver:Platform>
— <pariver:Platform identifier="ios_xml_logging”>
<pariver:Description >Any Cisco device with IOS Version 12.2(15)T
and later</pariver:Description>
<pariver:OSReference>os.cisco.ios.12.2(15)T.later</pariver:OSRefer
ence>
</pariver:Platform>
</PlatformDefinitions>
- <VersionSelectorRefs>
<VersionSelectorRef>ios</VersionSelectorRef>
<VersionSelectorRef>pix_7_later</VersionSelectorRef>
<VersionSelectorRef>ios_logging count</VersionSelectorRef>
<VersionSelectorRef>ios_xml_logging</VersionSelectorRef>
</VersionSelectorRefs>
+ <ServiceProperties>
+ <ServiceAttributeList>
- <RelationshipList>
A partial listing of a Decorator XML for the logging service is as follows:
— <ServiceDecorator
xmlns="“http://www.parinetworks.com/schemas/1.0”>
30 - <Properties>
<ServiceRef>Logging </ServiceRef>
<Title>Logging</Title>
</Properties>
<AttributeDecoratorList>
<AttributeDecorator identifier="State’>
<AttributeProperties™>
<AttributeRef>State</AttributeRef>
<DisplayName>State</DisplayName>
</AttributeProperties™>
— <FormProperties™>
<Label>Enable</Label>
<LabelVisible>true</Label Visible>
<ControlType>CheckBox</Control Type>
</FormProperties™>
<TableProperties™>
<ColumnName>State</ColumnName>
</TableProperties>
</AttributeDecorator>
— <AttributeDecorator identifier="LoggingBuffer”>
— <AttributeProperties™>
<AttributeRef>LoggingBuffer</AttributeRef>
<DisplayName>Logging Buffer</DisplayName>
</AttributeProperties™>
— <FormProperties™>
<Label>Enable</Label>
<LabelVisible>true</Label Visible>
<ControlType>CheckBox</Control Type>
</FormProperties™>
— <TableProperties>
<ColumnName>Logging Buffer</ColumnName>
</TableProperties>
</AttributeDecorator>
<AttributeDecorator identifier="XMLLoggingBuffer”>
<AttributeProperties™>
<AttributeRef>XMLLoggingBuffer</AttributeRef>
<DisplayName>XML Logging Buffer</DisplayName>
</AttributeProperties™>
— <FormProperties™>
<Label>Enable</Label>
<LabelVisible>true</Label Visible>
<ControlType>CheckBox</Control Type>
</FormProperties™>
— <TableProperties>
<ColumnName>XML Logging Buffer</ColumnName>

15

20

35

40

45

50

55

60

65

US 9,264,326 B2

11

-continued

</TableProperties™>
</AttributeDecorator>
— <AttributeDecorator identifier="BufferSize”>
— <AttributeProperties™>
<AttributeRef>BufferSize</AttributeRef>
<DisplayName>Buffer Size</DisplayName>
</AttributeProperties™>
— <FormProperties™>
<Label>Size</Label>
<LabelVisible>true</Label Visible>
<Control Type />
</FormProperties™>
— <TableProperties>
<ColumnName>Buffer Size</ColumnName>
</TableProperties™>
</AttributeDecorator>

FIG. 8 is a graphical user interface screen-shot showing an
example of a normalized configuration view of a logging
service feature for a network device. The check boxes 800,
blank fields 810, drop-down menus 820, values in the drop-
down menus, etc., are all defined by the three XML files
described above. In addition, the help explanation shown at
830 is also defined by the XML files.

The advantages of managing services using the techniques
depicted by FIGS. 7 and 8 are independent of the vendor,
operating system or firmware versions of the network
devices. A GUI configuration screen is automatically created
to allow a user to quickly visualize current configurations of
these features on the devices, make changes to the settings,
and configure and provision features on network devices
without the user having to know the complex syntaxes used in
a typical CLI command. The use of XML files can automate
provisioning of network features on devices uniformly
instead of generating CLIs for each type of device or OS
version. It becomes much easier to port and migrate configu-
rations from one platform of network devices to a completely
different platform.

Reference is now made to FIG. 9 that shows a flow chart
depicting the operations involved in network management
and/or configuration of one or more network devices using a
flexible XML based parser. At 900, the management device
receives a trigger to execute an operation command on a
network device. At 910, the management device connects to
the network device. At 920, the management device supplies
a CLI command for execution of the operation command,
with arandomly generated unique string being included at the
end ofthe command. At 930, the management device receives
output of the operation command from the network device. At
940, the management device detects the end of the operation
command output based on the randomly generated string. At
950, the operation command output is parsed using an XML
based parser.

The above description is intended by way of example only.
Various modifications and structural changes may be made
therein without departing from the scope of the concepts
described herein and within the scope and range of equiva-
lents of the claims.

What is claimed is:

1. A method comprising:

receiving a trigger for an operation command to be
executed by a network device;

supplying, to the network device, a command line interface
command for execution of the operation command,
wherein a randomly generated string is included at the
end of the command line interface command,;

20

25

30

35

40

45

50

55

60

65

12

receiving, from the network device, an output of the opera-
tion command that includes the randomly generated
string; and

detecting an end of the operation command output based

on the randomly generated string included with the
received output of the operation command.

2. The method of claim 1, wherein the command line
interface command supplied to the network device is fol-
lowed by a carriage return and the randomly generated string.

3. The method of claim 1, wherein the trigger is automati-
cally scheduled or is based on user input.

4. The method of claim 1, further comprising:

parsing the operation command output generated by the

device using an Extensible Markup Language (XML)
based parser.

5. The method of claim 4, further comprising:

configuring the XML based parser to parse different opera-

tion command outputs with XML files using anchors
and regular expressions irrespective of whether the
operation command output is free style or in tabular
form.

6. The method of claim 4, further comprising:

supplying outputs from the XML based parser to an XML

based report generator function;

generating, based on the outputs of the XML based parser,

one or more reports with the XML based report genera-
tor function; and

displaying the reports to a user via a web interface, email,

console or graphical user interface.

7. The method of claim 6, wherein displaying comprises:

displaying at least one of: a device report, a service report,

a configuration report, a life cycle management report, a
compliance and audit report, and a traffic flow report.

8. An apparatus comprising:

a network interface unit that enables communications over

a network;
a memory;
a processor coupled to the network interface unit and the
memory, wherein the processor:
receives a trigger for an operation command to be
executed by a network device;
supplies, to the network device, a command line inter-
face command for execution of the operation com-
mand, wherein a randomly generated string is
included at the end of the command line interface
command;
receives, from the network device, an output of the
operation command that includes the randomly gen-
erated string; and
detects an end of the operation command output based
on the randomly generated string included with the
received output of the operation command.

9. The apparatus of claim 8, wherein the command line
interface command supplied to the network device is fol-
lowed by a carriage return and the randomly generated string.

10. The apparatus of claim 8, wherein the trigger is auto-
matically scheduled or is based on user input.

11. The apparatus of claim 8, wherein the processor:

parses the operation command output generated by the

device using an Extensible Markup Language (XML)
based parser.

12. The apparatus of claim 11, wherein the XML based
parser parses different operation command outputs with
XML files using anchors and regular expressions irrespective
of whether the operation command output is free style or in
tabular form.

US 9,264,326 B2

13

13. The apparatus of claim 11, wherein the processor:
supplies outputs from the XML based parser to an XML
based report generator function;
generates, based on the outputs of the XML based parser,
one or more reports with the XML based report genera-
tor function; and
displays the reports to a user via a web interface, email,
console or graphical user interface.
14. The apparatus of claim 13, wherein to display the
reports the processor:
displays at least one of: a device report, a service report, a
configuration report, a life cycle management report, a
compliance and audit report, and a traffic flow report.
15. One or more non-transitory computer readable storage
media encoded with executable instructions that, when
executed by a processor, are operable to:
receive a trigger for an operation command to be executed
by a network device;
supply, to the network device, a command line interface
command for execution of the operation command,
wherein a randomly generated string is included at the
end of the command line interface command,;
receive, from the network device, an output of the opera-
tion command that includes the randomly generated
string; and
detect an end of the operation command output based on
the randomly generated string included with the
received output of the operation command.

10

15

20

25

14

16. The computer readable storage media of claim 15,
wherein the command line interface command supplied to the
network device is followed by a carriage return and the ran-
domly generated string.

17. The computer readable storage media of claim 15,
wherein the trigger is automatically scheduled or is based on
user input.

18. The computer readable storage media of claim 15,
further comprising instructions operable to:

parse the operation command output generated by the

device using an Extensible Markup Language (XML)
based parser.

19. The computer readable storage media of claim 18,
further comprising instructions operable to:

configure the XML based parser to parse different opera-

tion command outputs with XML files using anchors
and regular expressions irrespective of whether the
operation command output is free style or in tabular
form.

20. The computer readable storage media of claim 18,
further comprising instructions operable to:

supply outputs from the XML based parser to an XML

based report generator function;

generate, based on the outputs of the XML based parser,

one or more reports with the XML based report genera-
tor function; and

display the reports to a user via a web interface, email,

console or graphical user interface.

#* #* #* #* #*

